The L^{p}-Saturation of the Bernstein-Kantorovitch Polynomials*

S. D. RIEMENSCHNEIDER
Department of Mathematics, University of Alberta, Edmonton, Canada
Communicated by G. G. Lorentz
Received December 10, 1976

In this note, we extend the saturation result of Volker Maier [2] for the Bernstein-Kantorovitch polynomials on $L^{1}[0,1]$ to $L^{p}[0,1], 1<p<\infty$. The Bernstein-Kantorovitch polynomials are defined for $f \in L^{p}[0,1]$ by

$$
P_{n}(f, x)=\sum_{k=0}^{n} p_{n k}(x)(n+1) \int_{I_{k}} f(t) d t
$$

where

$$
p_{n k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, \quad I_{k}=\left[\frac{k}{n+1}, \frac{k+1}{n+1}\right] .
$$

The best direct approximation theorem for these polynomials in terms of the modulus of smoothness in $L^{p}[0,1]$ has been given by Berens and DeVore [1]. However, their theorem is not invertible. We shall prove the following direct estimate.

Theorem 1. Let $f \in L^{p}[0,1], 1 \leqslant p \leqslant \infty$, and suppose that f has the representation:

$$
\begin{equation*}
f(x)=k+\int_{\xi}^{x} \frac{h(u)}{U} d u \tag{}
\end{equation*}
$$

where $\xi \in(0,1), \quad U=u(1-u), k$ is a constant, $h(0)=h(1)=0$, and $h^{\prime} \in L^{p}[0,1], 1<p \leqslant \infty$, or $h \in \mathrm{~B} . \mathrm{V} \cdot[0,1]$ for $p=1$. Then

$$
\begin{aligned}
(n+1)\left\|P_{n} f-f\right\|_{p} & \leqslant C\left\{\left\|f^{\prime}\right\|_{p}+\left\|\left(X f^{\prime}\right)^{\prime}\right\|_{p}\right\}, & & 1<p \leqslant \infty, \\
& \leqslant C\left\{\left\|X f^{\prime}\right\|_{\infty}+\left\|X f^{\prime}\right\|_{\text {B. . } . ~}\right\}, & & p=1,
\end{aligned}
$$

where $C>0$ is a constant and $X=x(1-x)$.

[^0]For $p=1$, this was proved by Maier [2], but we shall give a different derivation based on his fundamental estimates for the action of P_{n} on certain \log functions (see Lemma 1). Maier also essentially provided (with only slight modification) the converse to Theorem 1 for $1 \leqslant p<\infty$. Thus, we have the saturation result,

Theorem 2. (a) If $f \in L^{p}[0,1], 1 \leqslant p<\infty$, then f has the representation ${ }^{(*)}$ if and only if $(n+1)\left\|P_{n} f-f\right\|_{p}=O(1)$.
(b) $(n+1)\left\|P_{n} f-f\right\|_{p}=o(1)$ if and only if f is constant a.e.

Part (b) of Theorem 2 is a trivial consequence of the $p=1$ result.

1. Some Lemmas

Before proving Theorem 1, we establish some estimates for three particular functions; namely, $\ln t, \ln (1-t)$ and $g(t)=\ln t-\ln (1-t)$.

Lemma 1. Let $1 / q=(p-1) / p, 1 \leqslant p<\infty$, or $1 / q=1$ for $p=\infty$.
(a) $\left\|x^{1 / q}\left[P_{n}(\ln \cdot, x)-\ln x\right]\right\|_{p}=O\left((n+1)^{-1}\right)$
(b) $\|(1-x)^{1 / q}\left[P_{n}(\ln (1-\cdot), x)-\ln (1-x)\| \|_{p}=O\left((n+1)^{-1}\right)\right.$
(c) $\left\|X^{1 / 4}\left[P_{n}(g, x)-g(x)\right]\right\|_{p}=O\left((n+1)^{-1}\right)$.

Proof. Note that (b) follows from (a) by a change of variable and symmetry in $P_{n}(f, x)$. Also, (c) is a consequence of (a) and (b) and the triangle inequality.

Thus, we need only establish (a). However, Maier accomplished the essential estimates when he established (a) for $p=1$. We shall observe that relation (a) holds for $p=\infty$. The general result then follows as in the proof of the Riesz-Thorin theorem (See Zygmund [3, p. 95].)

Volker Maier obtained the estimate

$$
\begin{equation*}
\left|P_{n}(\ln \cdot, x)-\ln x\right| \leqslant(1-x)^{n}+\frac{1}{n}+\frac{5}{6} \sum_{k=1}^{n-1} \frac{p_{n k}(x)}{k^{2}}+\sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k} \tag{1.1}
\end{equation*}
$$

($[2, p .48]$, where we have used $\left|r_{n n}\right| \leqslant n^{-1}$). Observe that $x(1-x)^{k}$ has its maximum at $x=1 /(k+1)$. Thus, the first and last terms on the right in (1.1) are $O\left((n+1)^{-1}\right)$ when multiplied by x. Similarly, $x^{k+1}(1-x)^{n-k}$ attains its maximum at $x=(k+1) /(n+1)$. Therefore, applying Stirling's formula,

$$
x p_{n k}(x)=O\left([(k+1) /(n+1)(n-k)]^{1 / 2}\right) .
$$

A careful estimate then shows that

$$
\sum_{k=1}^{n-1}\left[(k+1)^{3}(n-k)(n+1)\right]^{-1 / 2}=O\left((n+1)^{-1}\right)
$$

which provides the lemma.
The representation $\left(^{*}\right)$ implicitly contains more information about f. In fact,

Lemma 2. If $f \in L^{p}[0,1], 1<p \leqslant \infty$, and f has the representation (${ }^{*}$), then $f^{\prime} \in L^{p}[0,1]$.

Proof. Since $h(0)=h(1)=0$ and $h^{\prime} \in L^{p}[0,1]$, we have

$$
\begin{equation*}
f^{\prime}(x)=\frac{h(x)}{X}=\frac{1}{x} \int_{0}^{x} h^{\prime}(u) d u-\frac{1}{1-x} \int_{x}^{1} h^{\prime}(u) d u . \tag{1.2}
\end{equation*}
$$

The operators on the right in (1.2) are bounded on $L^{p}[0,1], 1<p \leqslant \infty$ (Hardy's inequalities).

2. Proof of Theorem 1

For any $x, t \in(0,1)$ and for f having the representation $\left(^{*}\right)$, there holds

$$
\begin{equation*}
f(t)-f(x)=X f^{\prime}(x)(g(t)-g(x))+\int_{t}^{x}(g(u)-g(t)) d\left(U f^{\prime}(u)\right) \tag{2.1}
\end{equation*}
$$

Applying the operator P_{n} to (2.1) in the variable t, we obtain

$$
\begin{align*}
P_{n}(f, x)-f(x)= & X f^{\prime}(x)\left[P_{n}(g, x)-g(x)\right] \\
& +P_{n}\left(\int_{t}^{x}(g(u)-g(t)) d\left(U f^{\prime}(u)\right), x\right) \tag{2.2}
\end{align*}
$$

Taking $L^{p}[0,1]$ norms on both sides and applying Lemmas 1(c) and 2, we obtain

$$
\begin{equation*}
\left.\left\|P_{n}(f, x)-f(x)\right\|_{p} \leqslant \frac{C}{n+1}\left\|f^{\prime}\right\|_{p}+\| P_{n}\left(\int_{t}^{x}(g(u)-g(t)) d\left(U f^{\prime}\right)(u)\right), x\right) \|_{p} \tag{2.3}
\end{equation*}
$$

(for $p=1,\left\|f^{\prime}\right\|_{p}$ is replaced by $\left\|X f^{\prime}\right\|_{\infty}$). Thus, it remains to bound the second term on the right in (2.3). We do this for $p=1$ and $p=\infty$ and then use interpolation theory.

Lemma 3. $(n+1)\left\|P_{n}\left(\int_{t}^{x}(g(u)-g(t)) d h(u), x\right)\right\|_{1} \leqslant c\|h\|_{\mathrm{B} . \mathrm{v} .}$

Proof. Let $K(n, t, x)=\sum_{k=0}^{n} p_{n k}(x)(n+1) \chi_{t_{k}}(t)$. Then using the fact that $\operatorname{sgn}(g(u)-g(t))=\operatorname{sgn}(u-t)$ and using Fubini's theorem twice, we obtain

$$
\begin{aligned}
\int_{0}^{1} \mid P_{n} & \left(\int_{t}^{x}(g(u)-g(t)) d h(u), x\right) \mid d x \\
\leqslant & \int_{0}^{1} \int_{0}^{x} K(n, t, x) \int_{t}^{x}(g(u)-g(t))|d h(u)| d t d x \\
& \left.+\int_{0}^{1} \int_{x}^{1} K(n, t, x) \int_{x}^{t}(g(t)-g(u))\right)|d h(u)| d t d x \\
\leqslant & \int_{0}^{1}\left\{\int_{u}^{1} \int_{0}^{u} K(n, t, x)(g(u)-g(t)) d t d x\right. \\
& \left.+\int_{0}^{u} \int_{u}^{1} K(n, t, x)(g(t)-g(u)) d t d x\right\}|d h(u)| \\
= & \int_{0}^{1}\left\{\int_{u}^{1} P_{n}\left((g(u)-g(\cdot))_{+}, x\right) d x\right. \\
& \left.+\int_{0}^{u} P_{n}\left((g(\cdot)-g(u))_{+}, x\right) d x\right\}|d h(u)|
\end{aligned}
$$

Hence, we must show that
$\int_{u}^{1} P_{n}\left((g(u)-g(\cdot))_{+}, x\right) d x+\int_{0}^{u} P_{n}\left((g(\cdot)-g(u))_{+}, x\right) d x=O\left((n+1)^{-1}\right)$.
But, $(g(u)-g(x))_{+}=0$ on $u \leqslant x \leqslant 1$, and for any function $f, \int_{0}^{1}\left(P_{n}(f, x)-\right.$ $f(x)) d x=0$. Therefore,

$$
\begin{aligned}
& \int_{u}^{1} P_{n}\left((g(u)-g(\cdot))_{+}, x\right) d x \\
& \quad=-\int_{0}^{u}\left[P_{n}\left((g(u)-g(\cdot))_{+}, x\right)-(g(u)-g(x))_{+}\right] d x
\end{aligned}
$$

Hence, the left-hand side of (2.4) equals

$$
\begin{aligned}
\int_{0}^{u} & {\left[P_{n}((g(\cdot)-g(u)), x)-(g(x)-g(u))\right] d x } \\
& =\int_{0}^{u}\left[P_{n}(g, x)-g(x)\right] d x \\
& =O\left((n+1)^{-1}\right)
\end{aligned}
$$

by Lemma 1 (c) for $p=1$.

Lemma 4. $\quad(n+1)\left\|P_{n}\left(\int_{t}^{x}(g(u)-g(t)) h^{\prime}(u) d u, x\right)\right\|_{\infty} \leqslant C\left\|h^{\prime}\right\|_{\infty}$
Proof. As for the last lemma, we have

$$
\begin{aligned}
& \mid P_{n}(\left.\int_{t}^{x}(g(u)-g(t)) h^{\prime}(u) d u, x\right) \mid \\
&= \mid \int_{0}^{x} K(n, t, x) \int_{t}^{x}(g(u)-g(t)) h^{\prime}(u) d u d t \\
& \quad+\int_{x}^{1} K(n, t, x) \int_{x}^{t}(g(t)-g(u)) h^{\prime}(u) d u d t \mid \\
& \leqslant\left\|h^{\prime}\right\|_{\infty} \int_{0}^{1} K(n, t, x) \int_{t}^{x}(g(u)-g(t)) d u d t \\
&=\left\|h^{\prime}\right\|_{\infty} \int_{0}^{1} K(n, t, x)\{[\ln x-\ln t] x \\
&\quad+(1-x)[\ln (1-x)-\ln (1-t)]\} d t \\
&=\left\|h^{\prime}\right\|_{\infty}\left\{x\left\{\ln x-P_{n}(\ln \cdot x)\right]+(1-x)\left[\ln (1-x)-P_{n}(\ln (1-\cdot), x)\right]\right\} \\
&=\left\|h^{\prime}\right\|_{\infty} O\left((n+1)^{-1}\right)
\end{aligned}
$$

by Lemma 1(a) and (b).
In order to complete the proof of Theorem 1, we observe that Lemmas 3 and 4 imply that the linear operator

$$
T_{n} F(x)=(n+1) P_{n}\left(\int_{t}^{x}(g(u)-g(t)) F(u) d u, x\right)
$$

is bounded independently of n on $L^{p}[0,1]$ for $p=1, \infty$. Thus, it is bounded for all $p, 1 \leqslant p \leqslant \infty$. Taking $F(u)=\left(U f^{\prime}(u)\right)^{\prime}$, we see that the theorem follows.

Remark. By Lemma $2, f^{\prime} \in C(0,1) \cap L^{p}[0,1]$, which implies that $\left|f^{\prime}(x)\right|=O\left(X^{-1 / p}\right)$. Thus, in (2.3) and the statement of Theorem 1, we could replace $\left\|f^{\prime}\right\|_{p}$ by $\left\|X^{1 / p} f^{\prime}\right\|_{\infty}$ when $1<p \leqslant \infty$.

References

1. H. Berens and R. DeVore, Quantitative Korovkin theorems for L_{p}-spaces, in "Approximation Theory," Vol. II (C. K. Chui, L. L. Schumaker, and G. G. Lorentz, Eds.), pp. 289-298, Academic Press, New York, 1976.
2. V. Maier, "Güte- und Saturationsaussagen für die L_{1}-Approximation durch spezielle Folgen linearer positiver Operatoren," Dissertation, Universität Dortmund, 1976.
3. A. Zygmund, "Trigonometric Series," Vol. II, Cambridge Univ. Press, London, 1968.

[^0]: * This research was partially supported by Canadian National Research Council Grant A-7687, and was completed while the author was a Visiting Scholar at The University of Texas at Austin.

