
JOURNAL OF APPROXIMATION THEORY 23, 158-162 (1978)

The LP-Saturation of the Bernstein-Kantorovitch Polynomials*

S. D. RIEMENsCHNEIDER

Department of Mathematics, University of Alberta, Edmonton, Canada

Communicated by G. G. Lorentz

Received December 10, 1976

In this note, we extend the saturation result of Volker Maier [2] for the
Bernstein-Kantorovitch polynomials on LI[O, I] to UfO, I], I < P < 00.

The Bernstein-Kantorovitch polynomials are defined for fE UfO, I] by

n

PnU; x) = I Pnk(x)(n + 1) JJ(t) dt
k~O ~

where

[ k k+l]
I k = n + 1 ' n + 1 .

(*)

The best direct approximation theorem for these polynomials in terms of
the modulus of smoothness in LP[O, I] has been given by Berens and DeVore
[I]. However, their theorem is not invertible. We shall prove the following
direct estimate.

THEOREM 1. Let f E UfO, 1], I ~ p ~ 00, and suppose that f has the
representation:

J(x) = k +rh~) du

where gE (0, I), U = u(l - u), k is a constant, h(O) = h(l) = 0, and
h' E UfO, I], I < p ~ 00, or hE B.V.[O, 1] for p = 1. Then

(n + 1) II Pnf - fll" ~ C{II!' II" + II(X!')' II,,},
~ C{II X!, 1100 + II X!, IIB.v,},

where C > 0 is a constant and X = x(l - x).

1 < P ~ 00,

P = 1,
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For p = 1, this was proved by Maier [2], but we shall give a different
derivation based on his fundamental estimates for the action of Pn on certain
log functions (see Lemma 1). Maier also essentially provided (with only
slight modification) the converse to Theorem 1 for 1 ~ P < co. Thus, we
have the saturation result,

THEOREM 2. (a) IffE prO, 1], 1 ~ P < 00, then f has the representation
(*) if and only if (n + 1) II Pnf - flip = 0(1).

(b) (n + 1) II Pnf - flip = 0(1) if and only iff is constant a.e.

Part (b) of Theorem 2 is a trivial consequence of the p = 1 result.

1. SOME LEMMAS

Before proving Theorem 1, we establish some estimates for three particular
functions; namely, In t, In(l - t) and get) = In t - In(1 - t).

LEMMA I. Let Ijq = (p - I)jp, I ~ P < 00, or 1jq = 1 for p = co.

(a) Ii x 1jQ[Pn(ln " x) - In x]llp = O«n + 1)-1)

(b) 'I (1 - x)ljQ[Pn(ln(1 - .), x) - In(1 - x)]lip = O«n + 1)-1)

(c) x1jQ[Pn(g, x) - g(x)]II" = O«n + 1)-1).

Proof Note that (b) follows from (a) by a change of variable and sym
metry in Pif, x). Also, (c) is a consequence of (a) and (b) and the triangle
inequality.

Thus, we need only establish (a). However, Maier accomplished the essen
tial estimates when he established (a) for p = I. We shall observe that
relation (a) holds for p = co. The general result then follows as in the proof
of the Riesz-Thorin theorem (See Zygmund [3, p. 95].)

Volker Maier obtained the estimate

!Pn(ln',x)-lnxl ~(l-x)n+l+rfPn~~X) + i (I ~X)k (1.1)
n k-l k-n+l

([2, p. 48], where we have used I rnn! ~ n-1). Observe that x(l - X)k has
its maximum at x = Ij(k + I). Thus, the first and last terms on the right in
(Ll) are O«n + 1)-1) when multiplied by x. Similarly, xk+1(1 - x)n-k
attains its maximum at x = (k + I)j(n + I). Therefore, applying Stirling's
formula,

XPnk(X) = O([(k + I)j(n + 1)(n - k)]1j2).
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A careful estimate then shows that

n-l

L [(k + 1)3(n - k)(n + 1)]-1/2 = O((n + 1)-1),
k~l

which provides the lemma.
The representation (*) implicitly contains more information about f

In fact,

LEMMA 2. IfIE LP[O, 1], I < p < 00, and I has the representation (*),
then f' E LP[O, I].

Proof Since h(O) = h(1) = °and h' E LP[O, I], we have

f'(x) = h~) = ~ rh'(u) du - I ~ X 1,,1 h'(u) duo (1.2)

The operators on the right in (1.2) are bounded on LP[O, I], I < p < 00

(Hardy's inequalities).

2. PROOF OF THEOREM 1

For any x, t E (0, 1) and for I having the representation (*), there holds

Jet) - j(x) = xf'(x)(g(t) - g(x» +r (g(u) - get»~ d(Uf'(u». (2.1)

Applying the operator Pn to (2.1) in the variable t, we obtain

Pn(f, x) - j(x) = xf'(x)[Pn(g, x) - g(x)]

+ P n (f (g(u) - get»~ d(Uf'(u», x). (2.2)

Taking Lp[O, 1] norms on both sides and applying Lemmas I(c) and 2, we
obtain

II Pn(f, x) - j(x)llp ~ n ~ I II!' lip + II Pn(f (g(u)-g(t»d(U!')(u»,x)t

(2.3)

(for p = I, 11f' lip is replaced by II X!, II",,). Thus, it remains to bound the
second term on the right in (2.3). We do this for p = 1 and p = 00 and then
use interpolation theory.

LEMMA 3. (n + 1) II Pn(f: (g(u) - get)~ dh(u), x)1I1 ~ ell h IIB.v.
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Proof Let K(n, t, x) = :L:=OPnk(x)(n + I)XIJt). Then using the fact
that sgn( g(u) - get)) = sgn(u - t) and using Fubini's theorem twice,
we obtain

( IPn ((' (g(u) - get)) dh(u), x)1 dx

~rr K(n, t, x)r (g(u) - get)) Idh(u)Idt dx
o 0 t

1 1 It+ I I K(n, t, x) (g(t) - g(u))) Idh(u)Idt dx
o x x

~ ( U~rK(n, t, x)(g(u) - get)) dt dx

+r(K(n, t, x)(g(t) - g(u)) dt dxll dh(u) I

= ( !f Pn«g(u) - gO)+, x) dx

+rPn«g(·) - g(u))+, x) dxll dh(u)l.

Hence, we must show that

rPn«g(u) - g('))+, x) dx + rPn«g(·) - g(u))+, x) dx = O«n + 1)-1).
u 0 (2.4)

But, (g(u) - g(x))+ = 0 on u ~ x ~ 1, and for any functionf, J~ (Pn(f, x) 
f(x)) dx = O. Therefore,

rPn«g(u) - g('))+, x) dx
u

= - r [Pn«g(u) - gO)+, x) - (g(u) - g(x))+l dx.
o

Hence, the left-hand side of (2.4) equals

r [Pn«g(·) - g(u)), x) - (g(x) - g(u))] dx
o

= r [Pn(g, x) - g(x)] dx
o

= O«n + 1)-1)

by Lemma l(c) for p = 1.
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LEMMA 4. (n + I) II Pn(f~ (g(u) - get)) h'(u) du, x)llro ~ ell h' Itro

Proof As for the last lemma, we have

IPn(( (g(u) - get)) h'(u) du, x) I

= If' K(n, t, x) ( (g(u) - g(t)) h'(u) du dt

+ 5,,1 K(n, t, x) 5"t (g(t) - g(u)) h'(u) du dt I

~ II h' liro ( K(n, t, x) ( (g(u) - get)) du dt

= II h' liro f K(n, t, x){[In x - In t]x
o

+ (1 - x)[ln(l - x) - In(1 - t)]} dt

= II h' 1100 {x{ln x - Pn{ln', x)] + (1- x)[ln(1- x) - Pn(ln(1 - '), x)]}

= II h' 1100 O«n + 1)-1)

by Lemma l(a) and (b).
In order to complete the proof of Theorem 1, we observe that Lemmas 3

and 4 imply that the linear operator

TnF(x) = (n + 1) Pn(( (g(u) - g(t))F(u) du, x)

is bounded independently of n on UfO, 1] for p = 1, 00. Thus, it is bounded
for all p, 1 ~ P ~ 00. Taking F(u) = (Uj'(u))', we see that the theorem
follows.

Remark. By Lemma 2, l' E qo, 1) () UfO, 1], which implies that
Ij'(x) I = O(X-l/P). Thus, in (2.3) and the statement of Theorem 1, we could
replace II l' lip by II Xl/PI' 1100 when 1 < P ~ 00.

REFERENCES

1. H. BERENS AND R. DEVORE, Quantitative Korovkin theorems for Lp-spaces, in "Ap
proximation Theory," Vol. II (C. K. Chui, L. L. Schumaker, and G. G. Lorentz, Eds.),
pp. 289-298, Academic Press, New York, 1976.

2. V. MAIER, "Giite- und Saturationsaussagen fUr die L1-Approximation durch spezielle
Folgen Iinearer positiver Operatoren," Dissertation, Universitiit Dortmund, 1976.

3. A. ZYGMUND, "Trigonometric Series," Vol. II, Cambridge Univ. Press, London, 1968.


